Comparative Study of Statistical Skin Detection Algorithms for Sub-Continental Human Images

نویسندگان

  • Mirza Rehenuma Tabassum
  • Alim Ul Gias
  • Md. Mostafa Kamal
  • Hossain Muhammad Muctadir
  • Muhammad Ibrahim
  • Asif Khan Shakir
  • Asif Imran
  • Saiful Islam
  • Md. Golam Rabbani
  • Shah Mostafa Khaled
  • Md. Saiful Islam
  • Zerina Begum
چکیده

Object detection has been a focus of research in human-computer interaction. Skin area detection has been a key to different recognitions like face recognition, human motion detection, pornographic and nude image prediction, etc. Most of the research done in the fields of skin detection has been trained and tested on human images of African, Mongolian and Anglo-Saxon ethnic origins. Although there are several intensity invariant approaches to skin detection, the skin color of Indian sub-continentals have not been focused separately. The approach of this research is to make a comparative study between three image segmentation approaches using Indian sub-continental human images, to optimize the detection criteria, and to find some efficient parameters to detect the skin area from these images. The experiments observed that HSV color model based approach to Indian sub-continental skin detection is more suitable with considerable success rate of 91.1% true positives and 88.1% true negatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform

In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...

متن کامل

Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable a...

متن کامل

Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1008.4206  شماره 

صفحات  -

تاریخ انتشار 2010